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Abstract: Predicting and executing a sequence of actions without intermediate
replanning, known as action chunking, is increasingly used in robot learning from
human demonstrations. However, its effects on learned policies remain puzzling:
some studies highlight its importance for achieving strong performance, while
others observe detrimental effects. In this paper, we first dissect the role of action
chunking by analyzing the divergence between the learner and the demonstrator.
We find that longer action chunks enable a policy to better capture temporal de-
pendencies by taking into account more past states and actions within the chunk.
However, this advantage comes at the cost of exacerbating errors in stochastic en-
vironments due to fewer observations of recent states. To address this, we propose
Bidirectional Decoding (BID), a test-time inference algorithm that bridges action
chunking with closed-loop operations. BID samples multiple predictions at each
time step and searches for the optimal one based on two criteria: (i) backward
coherence, which favors samples aligned with previous decisions, (ii) forward
contrast, which favors samples close to outputs of a stronger policy and distant
from those of a weaker policy. By coupling decisions within and across action
chunks, BID enhances temporal consistency over extended sequences while en-
abling adaptive replanning in stochastic environments. Experimental results show
that BID substantially outperforms conventional closed-loop operations of two
state-of-the-art generative policies across seven simulation benchmarks and two
real-world tasks.

1 Introduction

The increasing availability of human demonstrations has spurred renewed interest in behavioral
cloning [1, 2]. In particular, recent studies have highlighted the potential of learning from large-scale
demonstrations to acquire a variety of complex skills [3, 4, 5, 6, 7, 8]. However, this approach still
struggles with two common properties of human demonstrations: (i) strong temporal dependencies
across multiple steps, such as idle pauses [4] and latent strategies [9, 10], (ii) large style variability
across different demonstrations, including differences in proficiency [11] and preference [12]. Of-
tentimes, both properties are prevalent yet unlabeled in collected data, posing significant challenges
to traditional behavioral cloning, which typically learns a discriminative model to map an input state
to a target action.
In response to these challenges, recent works have pursued a generative approach characterized by
two key elements: (i) predicting a sequence of actions over multiple time steps and executing all or
part of the sequence, known as action chunking [3] or receding horizon [4]; (ii) modeling the distri-
bution of action chunks and sampling from the learned model in an independent [4, 13] or weakly
dependent [3, 14] manner during deployment. Some studies find these elements crucial for learning
a performant policy in controlled laboratory scenarios [3, 4], while other recent work reports op-
posite outcomes under practical conditions [6]. The reasons behind these conflicting results remain
unclear.
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Figure 1: Illustration of action chunking in a stochastic environment, where a robot is challenged to catch a box
on a moving trolley. (a) Vanilla action chunking [3] executes actions based on previous predictions, resulting
in delayed reactions to the latest box location. (b) Receding horizon [4] allows for faster reactions, but leads
to a jittery trajectory in the presence of multimodal demonstrations (e.g., both left- and right-handers). (c) Our
Bidirectional Decoding explicitly searches for the optimal action from multiple predictions sampled at each
time step, achieving long-range consistency while maintaining closed-loop reactivity.

In this paper, we first dissect the influence of action chunking by examining the divergence between
learned policies and human demonstrations. We find that when the input contains no or little his-
tory observations – short context lengths [3, 15, 16, 17, 18, 19] – increasing the length of action
chunks allows a policy to implicitly condition on more past states, improving its ability to cap-
ture the temporal dependencies inherent in demonstrations. However, this advantage comes at the
cost of fewer recent state observations, which can be crucial for reacting to unexpected changes in
stochastic environments, such as those involving action noise or moving targets. This tradeoff raises
a crucial question: How can we preserve the strengths of action chunking without suffering from its
limitations in reactivity?
To address this, we introduce Bidirectional Decoding (BID), an inference algorithm that integrates
action chunking into closed-loop control. Our main idea is to sample multiple predictions at each
time step and selectively search for the most desirable action, as illustrated in Fig. 1. Specifically,
BID operates on two decoding criteria: (i) backward coherence, which favors samples that are close
to the sequence selected at the previous step; (ii) forward contrast, which favors samples that are
close to the output of a stronger policy and distant from those of a weaker one. By coupling sequen-
tial decision-making both within and across action chunks, BID captures strong temporal dependen-
cies over extended periods while ensuring sufficient reactivity in single-step executions.
The main contributions of this paper are twofold: (a) a thorough analysis of action chunking, and
(b) a decoding algorithm to improve it. Our diagnostic simulations in a one-dimensional setting
validate our theoretical analysis. Our experiments with two state-of-the-art robotic policies across
seven simulations and two real-world tasks show that BID outperforms conventional closed-loop
operations of action chunking by more than 26% in relative performance. BID is computationally
efficient, model-agnostic, and easy to implement, serving as a plug-and-play component to enhance
generative behavior cloning at test time.

2 Related Work

Behavioral Cloning. Learning from human demonstrations is becoming increasingly popular in
robot learning due to recent advances in robotic teleoperation interfaces [3, 20, 21, 22]. Generative
Behavior cloning, which models the distribution of demonstrations, is particularly appealing due to
its algorithmic simplicity and empirical efficacy [3, 17, 22, 23, 24, 25, 26]. However, a significant
limitation is compounding errors, where deviations from the training distribution accumulate over
time [27, 28]. These errors can be mitigated by gathering expert correction data [27, 29, 30, 31,
32] or injecting noise during data collection [33, 34], but such strategies require additional time
and effort from human operators. To address this, recent work proposes predicting a sequence
of multiple actions into the future, known as action chunking, which reduces the effective control
horizon [3, 35, 36, 37]. By handling sequences of actions, action chunking is also better at handling
temporal dependencies in the data, such as idle pauses [4, 38] or multiple styles [11, 12, 39, 40].
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However, independently drawn action sequence samples may not preserve the necessary temporal
dependencies for smooth and consistent execution. Our work provides a thorough analysis of action
chunking and proposes a decoding algorithm to improve it.
Decoding Algorithm. Test-time decoding algorithms have been studied in generative sequence
modeling for decades, with renewed attention driven by recent advances in large language model-
ing (LLM). A prominent approach focuses on leveraging internal metrics, e.g., likelihood scores,
to improve the quality of generated sequences. Notable examples include beam search [41, 42],
truncated sampling [43, 44, 45], minimum Bayes risk decoding [46, 47], and many others [48, 49].
Another line of research explores the synergy of multiple generative models, such as contrastive
decoding [50] and speculative decoding [51], which jointly optimize for quality or efficiency. More
recently, several studies have highlighted the potential of guiding the decoding or sampling process
through the use of an external discriminative model, such as a classifier [52] or reward model [53].
In the context of robot learning, Huang et al. [54] introduced a framework to guide LLM decoding
for long-horizon robotic planning. Similarly, Xu et al. [55] proposed the guidance of diffusion mod-
els for manipulator design. To the best of our knowledge, our work is the first to explore decoding
algorithms for low-level robotic policy. We propose a decoding strategy centered on forward and
backward temporal consistency to address the inherent tradeoffs in action chunking.

3 Analysis: Tradeoffs in Action Chunking

3.1 Preliminaries

Consider a dataset of demonstrations D = {τi}Ni=1, where each demonstration τi consists of a
sequence of state-action pairs τi = {(s1, a1), (s2, a2), · · · , (sT , aT )} provided by a human ex-
pert. These demonstrations often exhibit strong temporal dependencies: an action at is not only
dependent on the current state st, but also influenced by the previous k steps of states and ac-
tions (st−1, at−1, · · · , st−k, at−k) due to unobservable latent variables. Some latent variables can
globally influence an entire sequence (e.g., speed, left- vs right-handed), while others may locally
influence specific segments within a sequence (e.g., planning strategies). They can also vary signifi-
cantly between different demonstrations or between different segments of the same sequence. Fig. 2
illustrates the decision process of a human expert, highlighting the inherent temporal dependencies.
To model these temporal dependencies, recent behavior cloning methods have focused on learning
the joint distribution of future actions conditioned on past states π(at, at+1, · · · , at+l|st−c, · · · , st),
or more succinctly π(at:t+l|st−c:t). Here, c denotes the number of past steps included as state
inputs, and l represents the number of future steps for action outputs. Training such policies typically
involves minimizing the divergence between the model distribution and the data distribution,

π = argmin
π

∑
τ∈D

∑
st−c:t
at:t+l

L(π(at:t+l|st−c:t), π
∗(at:t+l|st−c:t)). (1)

Upon training completion, the policy is deployed by sampling a sequence of actions and executing a
subset or the entire sequence for h ∈ [1, l] time steps without re-planning. This approach, commonly
referred to as action chunking [3], essentially takes in c states as context and executes h actions. We
thus call it a (c, h)-policy.
Interestingly, recent works have shown that the choices of context length c and action horizon h play
a crucial role in the empirical success of generative behavior cloning [3, 4, 6]. Specifically, extending
the context length c does not always improve performance, especially when human demonstrations
are limited (refer to Appendix A.2 for more details). Instead, extending the action horizon h has
become a common practice in the design of modern policies.
However, a (c, h)-policy built with a short context length and a long action horizon stands in stark
contrast to human experts, which often consider a longer history while re-planning at each time step,
effectively following a (k, 1)-policy. In the next section, we will analyze why, despite this difference,
extending the action horizon can sometimes improve the learned policy in certain scenarios while
limiting it in others.
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Figure 2: Illustration of the expert decision
process, where each action is influenced by
multiple past states due to latent variables.
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Figure 3: Illustration of (k, 1)-expert, (c, h)-learner and (c, h+
d)-learner. Gray shades are observed contexts; darker indicates
higher importance. Hatched areas denote executed predictions.

3.2 Analysis

To understand the influence of action chunking, we focus on the last time step of an action chunk,
where the discrepancy between the expert policy and the learned policy is most pronounced. At this
time step t, the expert, which is a (k, 1)-policy written as π∗ := π∗(at|st−k:t, zt−k:t), predicts at
by conditioning on k steps of the past states and the corresponding latent variables. In contrast, a
learned (c, h)-policy, written as π(c,h) := π(c,h)(at | st−h−c:t−h, at−h:t−1) is constrained to observe
c steps of the past states and its predicted actions over the past h− 1 steps.
Considering that recent policies often use a short context length c and a moderate action horizon h,
we assume the range of temporal dependency modeled by a (c, h)-policy is limited:
Assumption 1. The sum of context length and action horizon is less than the length of temporal
dependency in expert demonstrations, c+ h < k.
Additionally, since a (c, h)-policy observes only a subset of the states that the expert is conditioned
on, we assume that an optimal policy must reconstruct all missing information correctly:
Assumption 2. An optimal πc,h must infer the unobserved states based on the observed states and
actions by modeling the transition dynamics P (st′ | st′−1, at′−1) accurately for all time step t′.
Under these assumptions, the divergence between a learned policy and an expert policy is attributed
to two factors: (i) the importance of unobserved states in predicting the current action, and (ii) the
difficulty of inferring them based on the available information. To more clearly see the influence
of action horizon on these factors, we next compare the performance of two policies that have
the same context lengths but different action horizons, πh := π(c,h)(at|st−h−c:t−h, at−h:t−1) and
πh+d := π(c,h+d)(at|st−h−d−c:t−h−d, at−h−d:t−1), where d > 0 is an extended action horizon.
As illustrated in Fig. 3, each policy has access to unique information that is unavailable to the other.
πh observes some recent states, where πh+d is only aware of the executed actions. On the other
hand, πh+d has access to some earlier states and actions, which precede all information available to
πh. We characterize the importance of observations as follows (formal definitions in Appendix C.1):
Definition (Expected Observation Advantage). If a policy can observe a state st, we say that it
has an observation advantage αt over another policy that cannot observe it.
Definition (Maximum Inference Disadvantage). If a policy cannot observe a state st, the maxi-
mum divergence arising from inferring it incorrectly is ϵt.
Hence, we denote the observation advantage that πh gains from the observed recent states by αf

and the inference disadvantage it incurs from the earlier unobserved states by ϵb, whereas πh+d

conversely gains αb but incurs ϵf .
The difficulty of inferring each unobserved state hinges on both the relevant observations as well
as the environmental stochasticity. We quantify this difficulty as follows (formal definitions in Ap-
pendix C.1):
Definition (Forward Inference). Let Pf := P (St = gt|St−1 = gt−1, at−1) where gt and gt−1

are the ground truth states in the deterministic environment at time t and t − 1, respectively. In
deterministic environments, Pf = 1, whereas in stochastic settings, Pf is smaller.
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Definition (Backward Inference). Let Pb := P (St = gt|St+1 = gt+1) where gt and gt+1 are the
ground truth states in the deterministic environment at time t and t+1, respectively. Since Pb is not
conditioned on any action, it has higher entropy in general. In stochastic environments, Pb is small.
Given that the forward inference is generally easier than the backward inference, the performance
difference between πh and πh+d is bounded by the following (proofs are deferred to Appendix C)

Proposition 1 (Consistency-Reactivity Inequalities). Let L be a non-linear, convex loss function.
Let S+ ⊂ {st−k:t} be the states both the (c, h) and the (c, h + d) policies observe and let S− :=
{st−k:t} \ S+. Let C := {at−h−d:t−1} ∪ S+, G := {at, zt−k:t} ∪ S−. Then, we can bound the
expected loss of the (c, h+ d)-policy and the (c, h)-policy as:

αf − ϵb(1− P 2d
b ) ≤ min

πh+d

EG [L(πh+d, π
∗)|C]−min

πh

EG [L(πh, π
∗)|C] ≤ −αb + ϵf (1− P 2d

f )

(2)

Remark 1.1. Eq. (2) provides a general comparison of the performance of the two policies. Intu-
itively, the advantage of each policy stems from the additional information it has access to (i.e. αf

for πh and αb for πh+d) while the disadvantage is bounded by the maximum divergence arising from
inferring missing information incorrectly (i.e. ϵb(1− P 2d

b ) for πh and ϵf (1− P 2d
f ) for πh+d).

We next examine two specific environmental settings: highly deterministic and highly stochastic.
In highly deterministic environments, while both policies need to infer the same number of unob-
served states, πh+d benefits from conditioning on additional actions, which may significantly aid in
inferring the corresponding states through its action chunk. If the maximum errors ϵf arising from
inferring these states are bounded, πh+d becomes strictly advantageous:

Corollary 2 (Consistency in Deterministic Environments). In a highly deterministic environment, if
at is temporally dependent on at least one state in {st−h−c−d:t−h−c−1} and ϵf is finite,

min
πh+d

EG [L(πh+d, π
∗)|C] <min

πh

EG [L(πh, π
∗)|C] (3)

Conversely, in highly stochastic environments, inferring the unobserved states is challenging, re-
gardless of whether the actions are known. However, the recent states are likely more important
than earlier states for predicting the current action at. In this case, πh+d becomes strictly more
disadvantageous:

Corollary 3 (Reactivity in Stochastic Environments). In a highly stochastic environment, if temporal
dependency decreases over time, i.e., αf > ϵb, then

min
πh+d

EG [L(πh+d, π
∗)|C] >min

πh

EG [L(πh, π
∗)|C] (4)

In summary, there is no universally optimal action horizon across all conditions. Determining the ap-
propriate action horizon requires careful consideration of (i) the length of temporal dependencies in
the demonstrations and (ii) the level of transition stochasticity present in an environment. When both
temporal dependencies and environmental stochasticities are significant, the vanilla action chunking
approach leads to an inherent trade-off between these two competing factors.

4 Method: Bidirectional Decoding

As analyzed in §3, action chunking facilitates the modeling of temporal dependencies in demon-
strations but sacrifices reactivity to unexpected states in stochastic environments. In this section, we
address this issue by bridging long action chunks with closed-loop operations. We will first outline
the general framework in §4.1 and then describe two specific criteria in §4.2.

4.1 Test-Time Search

Given a generative policy with context length c and prediction horizon l, an action chunk sampled
at time t

a ∼ πθ(at, at+1, · · · , at+l|st−c, st−c+1, · · · ,st) (5)
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is expected to adhere to a consistent latent strategy over the next l time steps. However, naive closed-
loop operation of the policy entails executing only the first action of each predicted chunk, leading
to a sequence of actions a

(t)
t , a

(t+1)
t+1 , · · · , a(t+l)

t+l sampled at different time steps. When multiple
latent strategies exist in the demonstrations and are learned by the policy (e.g., left versus right, stop
versus go, fast versus slow), independently sampled action chunks may oscillate between different
strategies, leading to inconsistent behavior that diverges from the demonstrations.
Our main hypothesis is that while the probability of any pair of samples sharing the same latent strat-
egy is low, the likelihood of finding a consistent pair from a large number of samples is significantly
higher. This intuition motivates us to cast the problem of closed-loop action chunking as searching
for the optimal action among a batch of plans sampled at each time step,

a∗ = argmin
a∈A

LB(a) + LF (a), (6)

where A is the set of sampled action chunks, LB and LF are two criteria measuring the temporal
dependency with respect to the backward decision and forward plan, which we will describe next.

4.2 Bidirectional Criteria

Backward coherence. To preserve sufficient temporal dependency in closed-loop operations, a
sequence of actions should (i) commit to one action chunk in the absence of unexpected changes
and (ii) react smoothly to environmental changes. We use the action chunk selected at the previous
time step as a reference for enforcing coherence across time. Given the previous action chunk
â := a

(t−1)
t−1 , · · · , a(t−1)

t+l−1, we select action chunks that minimize the weighted sum of Euclidean
distances across the l − 1 overlapping steps:

LB =

l−1∑
τ=0

ρτ
∥∥∥a(t)t+τ − a

(t−1)
t+τ

∥∥∥
2
. (7)

Here, ρ is a decay hyperparameter to account for growing uncertainty over time. This backward loss
encourages similar latent strategies between neighboring steps, while allowing for gradual adapta-
tion to unforeseen transition dynamics.
Forward contrast. An ideal policy should predict far enough into the future to capture the planning
capabilities inherent in human demonstrations. However, building such a policy can be challenging
in practice due to modeling constraints and dataset limitations. Often, even the best policy available
may still produce a significant number of suboptimal plans. To address this, we introduce a forward
contrast objective to identify and reject these suboptimal plans. Specifically, we compare each
candidate plan with two sets of reference samples: one set from a stronger policy and the other set
from a weaker one. We use a well-trained model as the stronger policy, and a model from an early
underfitting checkpoint or with a shorter prediction horizon as the weaker policy. Intuitively, the
weaker policy cannot capture long-term planning as effectively as the stronger one. Our forward
contrast loss is thus framed as minimizing the average distance between a candidate plan and a set
of positive samples while maximizing its average distance from the negative ones,

LF =
1

N

( ∑
a+∈A+

l∑
τ=0

∥∥∥a(t)t+τ − a+t+τ

∥∥∥
2
−

∑
a−∈A−

l∑
τ=0

∥∥∥a(t)t+τ − a−t+τ

∥∥∥
2

)
, (8)

where A+ = A \ {a} is the positive set predicted by the strong policy π, A− is the negative set
predicted by the weaker one π′, and N is the sample size.
Fig. 4 illustrates the combined effects of the backward coherence and forward contrast criteria on
sample selection. Notably, not all samples in A+ and A− are necessarily subject to the same mode.
To mitigate this, we trim each set by removing samples that deviate significantly from the mode
of the previous decision. This is achieved by summing over the K smallest distance values for
in the positive and negative sets in Eq. (8). The full process of our decoding method is outlined
in Algorithm 1. Since all steps in BID can be computed in parallel, the overall computational
overhead remains modest on modern GPU devices.
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Figure 4: Illustration of bidirectional criteria.

Algorithm 1 Bidirectional Decoding
Require: current state s, batch size N , mode size K,

previous decision â, strong policy π, weak policy π′

1: Generate N samples from each policy a ∼ π(s),
a′ ∼ π′(s) to construct the initial sets A and A

′

2: Compute the backward loss LB for each sample
3: Select K samples with minimal LB from A and A

′

to construct A+ and A−, respectively
4: Compute the forward loss LF for each sample
5: Select a∗ ∈ A that minimizes the total loss
6: Update decision memory â← a∗

4.3 Discussions

Interpretation of our method. Our method makes no changes to the learned policy; instead, it
intervenes in the model distribution through sample selection. As illustrated in Fig. 11, randomly
sampled sequences may be misaligned with both the previous decisions and the target demonstra-
tions. Given a set of candidates, the backward step first identifies the behavioral mode from the past
decision stored in memory; the forward step then removes the samples with low likelihood under the
target distribution using prior knowledge of positive and negative samples. By comparing samples
across time steps and model horizons, our method bridges the gap between the proposal and target
distributions during inference.
Relation to recent methods. Our method builds upon the receding horizon [4] and temporal en-
sembling [3] used in previous works, but with crucial distinctions. Receding horizon seeks a com-
promise between temporal dependency and dynamic uncertainty by using a moderate action hori-
zon (e.g., half of the prediction horizon), which is inevitably sup-optimal when both factors are
prominent. Temporal ensembling strengthens dependency across chunks by averaging multiple de-
cisions over time; however, weighted-averaging operations can be detrimental when consecutive
decisions fall into distinct modes. Our method more effectively addresses cross-chunk dependency
through dedicated behavioral search and is not mutually exclusive with the previous methods. We
will demonstrate in the next section that combining our method with moving average can further
improve closed-loop action chunking.

5 Experiments

In this section, we present a series of experiments to answer the following questions:
1. How does our theoretical analysis on action chunking manifest under different conditions?
2. How does the proposed method affect the closed-loop operation of a policy with action chunking?
3. How does the proposed method scale with large batch sizes and complement existing methods?
To this end, we will first validate our theoretical analysis through one-dimensional diagnostic simu-
lations. We will then evaluate BID on seven tasks in three simulation benchmarks, including Push-
T [4], RoboMimic [56], and Franka Kitchen [57]. We will subsequently examine the generality and
scalability of our method under various base policies and sample sizes. We will finally demonstrate
the effectiveness of BID in two challenging real-world tasks involving dynamic objects.

5.1 One-Dimensional Diagnostic Simulations

Setup. We start with a diagnostic experiment in a one-dimensional state space {s0, s1, · · · , s10},
where s0 is the starting state and s10 is the goal state. The demonstrator plans to move forward by
one step in each state, except in s5 where it pauses unless the last five states visited were s5. Each
forward move has a success probability of 1 − δ, where δ denotes the level of stochastic noise in
the environment (as described in §3.1). Given these demonstrations, we train a collection of policies
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Figure 5: Probability distributions of idle actions taken by learners with varying action horizons in environments
with varying stochasticity. The noise level in the environment grows from left to right.

with different action horizons h ∈ {1, 2, 3, 5, 7, 10}. We investigate under what action horizon our
learner can better imitate the distribution of idle actions taken by the expert over multiple rollouts.
Result. As shown in Fig. 5, when the environment is deterministic (δ = 0), larger action horizons
capture the expert distribution better, consistent with Corollary 2. With an action horizon of 10,
the learner achieves zero total variation distance with the expert distribution. Conversely, when the
environment is highly stochastic δ = 0.8, an action horizon of 1 outperforms all other learners. With
moderate noise δ = 0.4, there is no discernible monotonic pattern due to the tradeoff revealed in
Proposition 1. Refer to Appendix A for more detailed results.

5.2 Effects of BID on Closed-Loop Action Chunking

Setup. We next examine the effect of our decoding algorithm on closed-loop action chunking in
seven simulation tasks. Throughout our experiments, we use Diffusion Policy [4], a state-of-the-art
algorithm for generative behavioral cloning, trained on human demonstrations as the base policy.
We use the official configurations and checkpoints of the Diffusion Policy in our experiments and
consider several competitive inference methods as points of comparison:
• Vanilla [4]: Execute the first action of a randomly sampled sequence in a closed-loop manner.
• Lowvar [13]: Similar to Vanilla, but reduce variance in the initial noise for the diffusion process.
• Warmstart [14]: Similar to Lowvar, but warm-start the initial noise for the diffusion process from

the previous decision.
• Exponential Moving Average (EMA) [3]: Smooth action chunking by averaging a new prediction
a with the previous one â for each overlapping step at = λat + (1 − λ)ât. This method is also
known as temporal ensembling. Here, λ ∈ (0, 1) is the decay rate of the previous prediction. By
default, we set λ = 0.75.

For BID, we use batch size N = 30 and mode size K = 10. For each method-environment pair, we
report an average score over 100 episodes. Please refer to Appendix B for implementation details.
Result. Our main empirical finding is that while existing inference methods offer some benefits
for closed-loop operations, they lack robustness. As shown in Table 1, Lowvar and Warmstart
yield clear improvements over the vanilla closed-loop operation in specific tasks, such as Transport
and Franka Kitchen. However, their average performance gains are relatively mild, likely due to
the difficulty in controlling the prediction variance caused by stochastic noise at each step of the
diffusion process. EMA generally produces better results, yet the improvements vary significantly
across different tasks and even degrade the performance in Tool Hang. The challenges of tuning
EMA are further discussed in Appendix A. In comparison, BID consistently achieves substantial
gains across all tasks, surpassing the vanilla baseline by over 26% in relative improvements.

5.3 Scalability and Compatibility of BID

Setup. We further assess two key properties of BID: scalability with large batch sizes and com-
patibility with existing inference methods. For scalability, we experiment with batch sizes of
{1, 5, 15, 30}. For compatibility, we apply BID with a batch size of 15 to two competitive base-
lines, Warmstart and EMA. These experiments are conducted in the Push-T task.
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Method Push T Lift Can Square Transport ToolHang Kitchen Average

Vanilla [4] 0.78 0.62 0.89 0.74 0.43 0.50 0.22 0.60
Lowvar [13] 0.79 0.54 0.91 0.75 0.52 0.52 0.25 0.61
Warmstart [14] 0.79 0.53 0.92 0.78 0.47 0.51 0.27 0.61
EMA [3] 0.83 0.77 0.92 0.75 0.59 0.46 0.51 0.69
BID (ours) 0.85 0.91 0.96 0.79 0.62 0.56 0.60 0.76
Table 1: Comparison of different methods for the closed-loop operation of diffusion policies. Evaluations are
based on the mean score over 100 episodes in the Push-T, RoboMimic, and 4-Object Franka Kitchen tasks.
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Figure 6: BID benefits from more samples (left) and complements existing inference methods (right). All
methods are evaluated for Diffusion Policy on the Pust-T task.

Result. As shown in Fig. 6, our method clearly benefits from the large batch size and is not yet
saturated with the default batch size used in our experiment in §5.2. Moreover, the benefits from
sampling with BID are complementary to that of existing inference methods. These two properties
highlight the strong potential of the proposed method in practice.

5.4 Generality and Overhead of BID

Setup. To examine the generality and overhead of our method, we next extend our experiment
to VQ-BET [6], a state-of-the-art transformer-based policy. Specifically, we use the public check-
point on the Push-T task provided by LeRobot [58] as the base policy. We use a checkpoint early-
terminated at 100 epochs as the weak policy in forward contrast. The computational time was
measured on a desktop equipped with an NVIDIA A5000 GPU.
Result. Table 2 summarizes the results of the baseline and our method with a batch size of 16 sam-
ples. We observe that the vanilla random sampling performs significantly worse than BID in both
closed and open-loop operations. Notably, the vanilla open-loop approach exhibits a rapid perfor-
mance decline as the environment becomes increasingly stochastic. Even in closed-loop operations,
the vanilla baseline still experiences a significant performance drop. In comparison, the closed-loop
BID demonstrates much higher robustness to stochastic noise.
The experiments on VQ-BET also confirm the absence of a universally optimal action chunk size.
Shorter action horizons tend to be more effective in noisy environments, while longer horizons excel
in cleaner settings. This variability aligns with our theoretical analysis in §3.1.
Table 3 details the computational overhead associated with BID at varying batch sizes. The re-
sult shows that the performance gains of our method come with a 2-3x increase in computational
overhead. We expect that this overhead will be less of a constraint with higher-end GPUs.

5.5 Real-world Experiments

Beyond the simulation experiments described above, we further evaluate the proposed BID through
two real-world experiments.

5.5.1 Dynamic Placing
Task. We consider a task where the robot is to deliver an object held in its gripper into a cup
held by a human. As shown in Fig. 7, this task comprises four main stages and presents two core
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Stochastic Noise 0.0 1.0 1.5

Vanilla Open-Loop 61.0 39.0 19.4
BID Open-Loop 65.2 39.8 21.4
Vanilla Closed-Loop 52.0 50.4 44.2
BID Closed-Loop 56.6 54.8 54.4

Table 2: Success rates of VQ-BeT on the Push-T task
under various conditions. BID consistently outper-
forms the vanilla counterpart. Closed-loop BID is
particularly advantageous in stochastic settings.

Sample Size Success (%) Time (ms)

1 (vanilla) 52.0 12.6
8 (ours) 53.8 25.6

16 (ours) 56.6 26.4
32 (ours) 56.6 27.3

Table 3: Success rates and inference times of VQ-
BeT across varying sample sizes. BID benefits from
a larger sample size at the cost of a doubled compu-
tational overhead, measured on an A5000 GPU.

challenges. First, due to the similar size of the object and the cup, the robot must achieve high
precision to place the object accurately into the cup. Second, the position of the cup is not fixed,
requiring the robot to adjust its plans based on the latest position continuously. This task mirrors
real-world scenarios where robots interact with a dynamic environment, accommodating moving
objects and agents.

Demonstration. In light of temporal dependencies and style variations in human behaviors, we
intentionally collect a diverse set of demonstration data, differing in factors such as average speed,
idling pause, and overall trajectory. We gather a total of 150 demonstration episodes: 50 clean and
consistent demonstrations, and 100 noisy and diverse demonstrations. All demonstrations success-
fully accomplish the task. Additional, the location of the cup is fixed and static within each episode.

Robot. Following previous works [4, 13], we use a Franka Panda as the robot hardware and the
vision-based diffusion policy for its operation. The robot is equipped with two cameras: one ego-
centric camera mounted at the wrist of the robot, one third-person camera mounted at a static bracket.
Both cameras provide visual observations at a resolution of 256× 256 pixels. The robot operates at
a frequency of 10 Hz, with a prediction horizon of 16 time steps.

Evaluation. We evaluate our method in comparison to vanilla random sampling under two con-
ditions: static target, where the target cup remains fixed throughout the evaluation, and dynamic
target, where the target cup is gradually moved. In the dynamic setting, the location of the cup stays
within the range of training locations, but the movement is not encountered during training. This
evaluation protocol is designed to explicitly assess the ability of the policy to react to unexpected
dynamics in the environment. Each method-setting pair is tested over 20 episodes, with both the
initial and target locations randomized across different episodes.

Result. We summarize the result of the real-world experiments in Fig. 9. The success rate of
vanilla random sampling is generally limited due to oscillations between different latent strategies,
which quickly diverge from the distribution of demonstrations. This issue is particularly pronounced
in the dynamic setting, where the vanilla baseline struggles to account for the target movements
within an action chunk lasting for 1.6 seconds. In contrast, the proposed BID method significantly
improves performance in both static and dynamic settings. Notably, BID maintains a similar success
rate in the dynamic setting as in the static setting, suggesting its potential to extend action chunking
into uncertain environments.

5.5.2 Dynamic Picking
Task. Next, we consider a task where the robot is required to pick up a cup and place it onto a
nearby saucer. The cup was pulled with a string until the robot’s gripper successfully grasped it.
The task consists of five main stages, which are illustrated in Fig. 8. This setup also tests the robot’s
capability to interact with a dynamic environment, a critical challenge in real-world applications.

Policy and Robot. We utilized the publicly available diffusion policy checkpoint from UMI [22]
without any additional fine-tuning. Notably, the policy was originally trained using demonstrations
in a static setting, where the cup’s position remained constant throughout the task. Our experimental
setup mirrored the one described by UMI, using the same UR5 robot hardware. This allowed us
to directly evaluate the policy’s transferability to a dynamic environment, where the cup’s position
changes during the task.
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(a) initialize

→

(b) approach

→

(c) decelerate

→

(d) place

Figure 7: Human demonstrations on a Franka Panda robot for a real-world object delivery task. The robot is
tasked with delivering an object held in its gripper into a cup held by a human. Each demonstration consists of
four main stages: (a) initialize the robot position randomly, (b) approach the target cup, (c) slow down near the
target cup, and (d) release the object. The position of the target cup may change during an episode.

(a) initialize (b) approach (c) grasp (d) pick (e) place

Figure 8: The robot is tasked with picking up a cup and placing it on a saucer nearby. The four main stages are
(a) initializing the robot, (b) approaching the target cup, (c) grasping the target cup, (d) picking up the cup, and
(e) placing the cup on the target saucer. The position of the target cup may change during an episode.

Evaluation. We evaluated BID against three baselines: vanilla random sampling in both open-
loop and closed-loop configurations, and EMA (closed-loop). These methods were tested under two
conditions: static target, where the cup remained in a fixed position, and dynamic target, where the
cup was moved using the string. Each method-setting combination was tested across 20 episodes,
with the initial positions of the cup and saucer kept consistent to ensure controlled comparisons.

Results. The results, summarized in Fig. 10, highlight the challenges of the dynamic setting.
Open-loop vanilla sampling performed poorly due to its inability to adapt to the cup’s movements,
often failing to approach the cup as it was pulled. While closed-loop vanilla sampling showed
improved reactivity, it suffered from inconsistent trajectories, resulting in jittery behavior when at-
tempting to grasp and place the cup. Similarly, closed-loop EMA sampling demonstrated higher
adaptability to environmental changes but often failed to firmly grasp the cup, likely due to the lim-
itations of naive averaging, which compromises commitment to a specific strategy. In contrast, BID
achieved at least a 2x improvement in success rate compared to all other methods in the dynamic
setting, while maintaining its performance in the static setting, demonstrating both adaptability and
precision in dynamic environments.

Other experiments. Please refer to Appendix A for additional analyses and ablations.

6 Conclusion

Summary. We have analyzed the strengths and limitations of action chunking for robot learning
from human demonstrations. Based on our analysis, we proposed Bidirectional Decoding (BID), an
inference algorithm that takes into account both past decisions and future plans for sample selection.
Our experimental results show that BID can consistently improve closed-loop operations, scale well
with computational resources, and complement existing methods. We hope these findings provide a
new perspective on addressing the challenges of generative behavioral cloning at test time.
Limitations. One major limitation of BID lies in its computational complexity. While the decoding
process can be parallelized on modern GPUs, it may remain prohibitive for high-frequency opera-
tions on low-cost robots. Designing algorithms that can generate quality yet diverse action chunks
under batch size constraints can be an interesting avenue for future research. Additionally, our anal-
ysis and method have been limited to policies with short context lengths, driven by their empirical
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Figure 9: Success rate of object delivery. Each
method-setting is evaluated across 20 episodes.
BID achieves much higher success rate than the
vanilla baseline, effectively handling the diverse
demonstrations and dynamic target.
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Figure 10: Success rate of cup replacement in the
dynamic setting. Each method is evaluated across
20 episodes. Existing methods degrade substan-
tially under slow cup movements, whereas BID
retains a strong performance.

effectiveness with limited human demonstrations. Developing techniques capable of learning robust
long-context policies can be another compelling direction for future research.
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previous decision

positive samples
negative samples

demo distribution

Figure 11: Distributional interpretation of BID. The backward criterion (Equation 7) favors samples close to
the past decision; the forward criterion (Equation 8) promotes samples with a high likelihood under the target
distribution.

Action Horizon

Noise Level 1 3 5 7 10

0.0 4.21 1.75 1.55 1.28 0.00
0.4 0.55 0.30 0.95 0.53 0.93
0.8 0.04 0.98 1.23 1.26 1.44

Table 4: Total variation distance between the action distributions of each model and the expert in environments
with varying noise levels. Lower values indicate better performance.

A Additional Experiments

A.1 One-dimensional Simulations

In addition to Fig. 5, we summarize the total variation distance between each learned policy and the
demonstration in the one-dimensional simulation. Our results indicate that a shorter action horizon
is more effective in noisier environments, whereas a longer action horizon yields better performance
in static environments.

A.2 Other Horizon Choices

Setup. Our work builds on the premise that the prediction horizon is longer than the context length,
as commonly designed for recent policies. While BID mitigates the inherent limitations of this de-
sign choice through test-time decoding, an important question remains: could extending the history
context itself yield stronger policies? To understand this, we trained diffusion policies with vary-
ing combinations of prediction horizons and context lengths on the Push-T task. Specifically, we
use a short context length (c = 2) and a short prediction horizon (h = 2) as our baseline, and
incrementally increase these parameters to larger values 6, 10, 14 to assess their impact.
Result. Fig. 12 compares the performance of the policy learned with different ∆h = h − c. As
expected, the policy with both a short prediction horizon and a short context length struggles to
capture long-range temporal dependencies, leading to suboptimal performance. Interestingly, ex-
tending the context length initially boosts performance (∆h = −4), but this trend reverses as the
context length becomes too long (∆h ≤ −8), likely due to overfitting to an increased number of
spurious features. In contrast, expanding the prediction horizon results in more robust performance
improvements, validating its pivotal role in policy design given limited demonstrations.

A.3 Ablation Study of Forward Contrast

Setup. To understand the effect of forward contrast (Equation 8), we evaluate the full version
of our method against three reduced variants: without forward contrast, without positive samples
(negative samples only), and without negative samples (positive samples only). Similar to §5.3, our
ablation study is conducted in the representative Push-T task.

Result. Fig. 13 summarizes the result of this ablation study. Notably, both positive and negative
samples are essential for effective sample selection, and omitting either leads to significant perfor-
mance declines. We conjecture that, without negative samples, our decoding method reduces to
an approximate maximum a posteriori estimation, which can result in suboptimal decisions due to
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Figure 12: Effect of prediction horizon (h) and context length (c) on diffusion policies in the Push-T task.
The baseline is set at h = 2 and c = 2, with ∆h = h − c = 0. Extending the prediction horizon (h >
2) consistently improves performance, whereas extending the context length (c > 2) can cause substantial
performance declines. Each model is trained for 5k epochs. Results are averaged over the last five checkpoints.
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Figure 13: Effect of positive and negative samples
on forward contrast. We measure the improvements
over the vanilla baseline in the Push-T task, relative
to the full version of BID. Using only positive or
only negative samples does not achieve the full per-
formance gains seen with the full contrastive.
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Figure 14: Effect of the decay rate for the exponen-
tial moving average. In each task, we measure the
relative performance among different decay rates.
The optimal decay rate varies by task, leading to a
practical challenge of identifying a universal tempo-
ral ensembling strategy [3].

modeling errors. Conversely, without positive samples, the selected samples may be biased towards
rare instances. This result highlights the importance of both components and suggests the potential
for extending this paradigm in future work.

A.4 Challenges for Temporal Ensebmling

EMA exhibits competitive performance in Table 1. However, tuning its decay rate can be difficult in
practice. Fig. 14 shows the sensitivity of EMA to the decay rate across three different tasks, where
the optimal choices differ significantly. We conjecture that this high sensitivity stems from the
variability in the latent strategies between consecutive predictions. When consecutive predictions
follow similar strategies, a lower decay rate (i.e., stronger moving average) can enhance smoothness
and improve performance. Conversely, when consecutive predictions diverge in their underlying
strategies, averaging them can introduce adverse effects. Our method promotes coherence in latent
strategies and thus effectively complements temporal ensembling, as evidenced in Fig. 6.

B Additional Details

Simulation Details. Our simulation experiments are conducted on three robot manipulation
benchmarks. We use the training data collected from human demonstrations in each benchmark.
Push-T: We adopt the Push-T environment introduced in [4], where the goal is to push a T-shaped
block on a table to a target position. The action space is two-dimensional end-effector velocity
control. The training dataset contains 206 demonstrations collected by humans.
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name value
batch size N 30
mode size K 10
prediction horizon l 16
temporal coherence decay ρ 0.9
moving average decay λ 0.75

Table 5: Default hyper-parameters in our experiments.

Robomimic: We use five tasks in the Robomimic suite [56], namely Lift, Can, Square, Transport,
and Tool Hang. The training dataset for each task contains 300 episodes collected from multi-human
(MH) demonstrations.
Franka Kitchen: We use the Franka Kitchen environment from [57], featuring a Franka Panda arm
with a seven-dimensional action space and 566 human-collected demonstrations. The learned policy
is evaluated on test cases involving four or more objects (p4), a challenging yet practical task for
robotic manipulation in household contexts.

Implementation Details. Our implementations are built upon the official code of Diffusion Pol-
icy [4], with modifications made solely to the inference process. Our simulation experiments use
state inputs, while our real-world experiments utilize visual inputs. For each simulation task, we
use the best checkpoint available from https://diffusion-policy.cs.columbia.edu/data/

experiments and evaluate it in the closed-loop operation, i.e., action horizon is set to 1. For for-
ward contrast, we train the weak policy for 50-100 epochs, resulting in a diverse set of suboptimal
plans. The core hyperparameters are summarized in Table 5.
For VQ-BeT [6], we use the best public checkpoint from the LeRobot Repository [58] as the strong
policy whereas we used a checkpoint trained for 100000 iterations as the weak policy. Backward
coherence, forward contrast and BID require sample diversity, so we select temperature=0.5 for
these methods whereas for the vanilla sampling, we used the default value temperature=0.1. Our
code will be released publicly.

C Proofs

First, we establish the following lemma which will help us compare different function classes:

Lemma 4. Let L be a convex function and let X and Y be two random variables. Let G be the
class of functions g(X) that accept X as an input. Then

min
g(X)∈G

EX,Y [L(f(X,Y ), g(X))] = EX

[
min
c∈R

EY [L(f(X,Y ), c)|X]

]
.

Proof. The left hand side is less than or equal to the right hand side by the following logic:

EX

[
min
c∈R

EY [L(f(X,Y ), c)|X]

]
= EX [EY [L(f(X,Y ), c∗(X))|X]]

≥ min
g(X)∈G

EX,Y [L(f(X,Y ), g(X))]

where we used c∗(X) := argminc EX [L(f(X,Y ), c)|X]. We get the inequality by recognizing
that R ⊊ G. On the other hand, the left hand side is greater than or equal to the right hand side. For
any g(X), we have:

E[L(f(X,Y ), g(X))] = EX [EY [L(f(X,Y ), g(X))|X]]

≥ EX

[
min
g

EY [L(f(X,Y ), g(X))|X]

]
= EX

[
min

c
EY [L(f(X,Y ), c)|X]

]
.

With these two inequalities, we conclude.
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Next, we prove the following lemma. This straightforward, and almost trivial, result is provided as
a separate lemma because we simplify terms in this manner quite often throughout our proofs.

Lemma 5. Let L be a convex function and let X,Y be two random variables. Then,

min
f

EX,Y [P (X ′ = X)L(f(X ′), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ ϵ

where ϵ = maxX′ ̸=X,X,Y {L(f∗(X ′), S(X,Y )} and f∗ = argminf{EX,Y [L(f(X), S(X,Y )]}

Proof.

min
f

EX,Y [P (X ′ = X)L(f(X ′), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
EX,Y [L(f(X), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ EX,Y

 ∑
X′ ̸=X

P (X ′)L (f∗(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ EX,Y

 ∑
X′ ̸=X

P (X ′)ϵ


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ ϵ

C.1 Definitions

Note that the informal definitions provided in §3.1 for expected observation advantage and maxi-
mum inference disadvantage have some deviations from the mathematical definitions. The informal
definitions only attempt to provide intuition for what these terms might mean but they are not suffi-
cient to describe the full construction.
To define the terms formally, we, first, analyze the effect of reducing context horizon. We show that,
provided action horizon is constant, decreasing context horizon causes performance of the optimal
policy to decrease.
Consider a (c, h)-policy whose probability of taking action at at time t in a chunk generated at t is
referred to as

π(c,h) := π(c,h)(at|st−c:t).

On the other hand, consider a (c + 1, h)-policy whose probability of taking action at in a chunk
generated at time t is referred to as

π(c+1,h) := π(c+1,h)(at|st−c−1:t).

Lastly, consider a (k, 1)-expert whose probability of taking action at at time t is π∗.
Proposition 6 (Backward Context is valuable). Let L be a non-linear, convex function. Let c < k.
Let G := {at, st−k:t−c−1, zt−k:t} and let C := {st−c:t}. Then,

min
π(c+1,h)

EG

[
L(π(c+1,h), π

∗)
∣∣∣C]
≤ min

π(c,h)

EG

[
L(π(c,h), π

∗)
∣∣∣C]
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Proof. We refer to the class of functions that accept at and st−c−1:t as inputs as X+,+. Similarly, the
class of functions that do not accept at as inputs but accept st−c−1:t as inputs is X+. The function
class that accepts only st−c:t and not st−c−1 or at as inputs are elements of X−. Lastly, the function
class that accepts st−c:t and at as inputs, but not st−c−1, are elements of X−,−.

min
π(c+1,h)∈X+,+

EG

[
L(π(c+1,h), π

∗
∣∣∣C]

= Eat

[
min

π′
(c+1,h)

∈X+

Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π′

(c+1,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4)

= Eat

[
Est−c−1

[
min

π′
(c,h)

∈X−
Est−k:t−c−2,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C

] ∣∣∣C]
(Lemma 4)

≤ Eat

[
min

π′
(c,h)

∈X−
Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]
(Jensen’s inequality)

= min
π(c,h)∈X−,−

Eat

[
Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π(c,h), π

∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4).

Use the law of total expectation to conclude.

Now, we formalize the definitions of Expected Observation Advantage and Maximum Inference
Disadvantage.
Recall that, in §3.1, we have two policies: π(c,h) and π(c,h+d); the former sees more recent states
while the latter remembers more past states. First, we define an agent that gets access to all the
information that both learners, combined, have: a (c + d, h)-policy whose probability of taking
action at in a chunk generated at time t− h is

π(c+d,h) := π(c+d,h)(at|st−h−d−c:t−h, at−h:t−1).

Observe that π(c+d,h) has access to more context than π(c,h), particularly the knowledge of states
st−h−c−d:t−h−c−1.
Definition (Expected Observation Advantage (αb)). We know, using Proposition 6, π(c+d,h) has
lower divergence with respect to π∗ than π(c,h). We say that the advantage π(c+d,h) gets from the
extra information is αb. More formally, we say that

0 ≤ αb = min
π(c,h)

EG

[
L(π(c,h), π

∗))
∣∣∣C]− min

π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C] (9)

where C = {st−h−c:t−h, at−h:t−1} and G = {at, st−k:t−h−c−1, st−h+1:t, zt−k:t}. In particular,
αb = 0 when st−h−d−c:t−h−c−1 can be deterministically inferred by π(c,h) or when the expert
policy is independent of them. However, this is extremely unlikely since π(c,h) does not know the
actions taken in those time steps (even more unlikely in a stochastic environment) and the expert’s
action depends on the last k time steps.
Definition (Maximum Inference Disadvantage (ϵf )). Consider the maximum divergence that
can be accumulated by the (c, h+ d)-policy from not knowing the recent states at time steps
st−h−d+1:t−h and let that be ϵf . More formally, we say that, for fixed C from Proposition 1, any
state in S− and any zt−k:t and any ŝt−h−d+1:t−h ̸= st−h−d+1:t−h:

L(π(c+d,h)(at|st−h−d−c:t−h−d, ŝt−h−d+1:t−h ̸= st−h−d+1:t−h, at−h:t−1), π
∗) ≤ ϵf . (10)

Here, π(c+d,h) := argminπ(c+d,h)
EG[L(π(c+d,h), π

∗)|C] is the optimal (c+ d, h)-policy.
Intuitively, maximum inference disadvantage captures the maximum dependency on relative time
steps whereas expected observation advantage captures the expected advantage from observing some
given states.
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To define αf and ϵb, we prove a second version of Proposition 6. Consider a (c, h)-policy whose
probability of taking action at at time t in a chunk generated at t is referred to as

π(c,h) := πL(c,h)(at|st−c:t).

On the other hand, consider a (c− 1, h+1)-policy whose probability of taking action at in a chunk
generated at time t− 1 is referred to as

π(c−1,h+1) := π(c−1,h+1)(at|st−c:t−1).

Lastly, consider a (k, 1)-expert whose probability of taking action at at time t is π∗.
Proposition 7 (Forward Context is valuable). Let L be a non-linear, convex function. Let c < k.
Let G := {at, st−k:t−c−1, st, zt−k:t} and let C := {st−c:t−1, at−1}. Then,

min
π(c,h)

EG

[
L(π(c,h), π

∗)
∣∣∣C]
≤ min

π(c−1,h+1)

EG

[
L(π(c−1,h+1), π

∗)
∣∣∣C]

Proof. The proof is similar to that of Proposition 6. We refer to the class of functions that accept
at and st−c:t as inputs as X+,+. Similarly, the class of functions that do not accept at as inputs but
accept st−c:t as inputs is X+. The function class that accepts only st−c:t−1 and not st or at as inputs
are elements of X−. Lastly, the function class that accepts st−c:t−1 and at as inputs, but not st, are
elements of X−,−.

min
π(c,h)∈X+,+

EG

[
L(π(c,h), π

∗
∣∣∣C]

= Eat

[
min

π′
(c,h)

∈X+

Est

[
Est−k:t−c−1,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4)

= Eat

[
Est

[
min

π′
(c−1,h+1)

∈X−
Est−k:t−c−2,zt−k:t

[
L(π′

(c−1,h+1), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C

] ∣∣∣C]
(Lemma 4)

≤ Eat

[
min

π′
(c−1,h+1)

∈X−
Est

[
Est−k:t−c−1,zt−k:t

[
L(π′

(c−1,h+1), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]
(Jensen’s inequality)

= min
π(c−1,h+1)∈X−,−

Eat

[
Est

[
Est−k:t−c−1,zt−k:t

[
L(π(c−1,h+1), π

∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4).

Use the law of total expectation to conclude.

Using this, we can define ϵb and αf in a similar manner:
Definition (Expected Observation Advantage (αf )). Recall that we have two models: π(c,h) and
π(c,h+d) and a hypothetical (c, h+ d)-policy that has access to all the information both our learners
have (as in Eq. (9) and Eq. (10)). Observe that π(c+d,h) has access to more context than π(c,h+d), par-
ticularly the knowledge of states st−h−d+1:t−h. Therefore, we know, using Proposition 7, π(c+d,h)

has lower divergence with respect to π∗ than π(c,h+d). We say that the advantage π(c+d,h) gets from
the extra information is αf . More formally, we say that

0 ≤ αf = min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗))
∣∣∣C]− min

π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C] (11)

where C = {st−h−d−c:t−h−d, at−h−d:t−1} and G = {at, st−k:t−h−d−c−1, st−h−d+1:t, zt−k:t}. In
particular, αf = 0 when π(c,h+d) can infer st−h−d+1:t−h perfectly i.e. when the environment is
completely static with Pf = 1. This makes sense–in the static environment, observing these states
does not provide any advantage since the optimal π(c,h+d) can infer these states anyway using the
actions taken at those time steps.
Note how this formal definition has some difference from the informal one. In particular, πh only
observes st−h−c:t−h, not necessarily all of st−h−d+1:t−h. So, some of the value of αf can be
informally called the ”advantage” πh gets over πh+d, but not necessarily all of it. Nevertheless, our
proofs will be using this formal definition.
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Definition (Maximum Inference Disadvantage (ϵb)). Consider the maximum divergence that can
be accumulated by the (c, h)-model from not knowing the past states st−h−d−c:t−h−c−1 and let that
be ϵb. More formally, we say that, for fixed C from Proposition 1, any state in S− and any zt−k:t

and any ŝt−h−d−c:t−h−c−1 ̸= st−h−d−c:t−h−c−1:

L(π(c+d,h)(at|ŝt−h−d−c:t−h−c−1 ̸= st−h−d−c:t−h−c−1, st−h−c:t−h, at−h:t−1), π
∗) ≤ ϵb. (12)

Here, π(c+d,h) := argminπ(c+d,h)
EG[L(π(c+d,h), π

∗)|C] is the optimal (c+ d, h)-policy.
The intuitive relationship between αf and ϵf (and the same for αb and ϵb) holds:

Proposition 8. αf ≤ ϵf and αb ≤ ϵb.

Proof. We prove the first inequality; the second can be proven in the same manner. We use As-
sumption 2 to write π(c,h+d) = Est−h−d+1:t−h∼P

[
π(c+d,h) | st−h−d−c:t−h−d, at−h−d:t−1

]
where

P is the environment’s transition dynamics. Let

Pcorrect inference = P (ŝt−h−d+1:t−h = st−h−d+1:t−h|st−h−d−c:t−h−d, at−h−d:t−1)

and

Pincorrect inference = P (ŝt−h−d+1:t−h ̸= st−h−d+1:t−h|st−h−d−c:t−h−d, at−h−d:t−1).

Then,

αf = min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)
∣∣∣C]− min

π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c+d,h)

EG

[
L(Pcorrect inferenceπ(c+d,h) + Pincorrect inferenceπ(c+d,h), π

∗)
∣∣∣C]

− min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

≤ min
π(c+d,h)

{EG

[
Pincorrect inferenceL(π(c+d,h)(conditioning on incorrect inference), π∗)

∣∣∣C]
+ EG

[
Pcorrect inferenceL(π(c+d,h)(conditioning on correct inference), π∗)

∣∣∣C]}
− min

π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C] (Convexity)

≤ EG

[
Pincorrect inferenceL(π̂∗

(c+d,h(conditioning on incorrect inference), π∗)
∣∣∣C]

+ EG

[
L(π∗

(c+d,h), π
∗)
∣∣∣C]− EG

[
L(π∗

(c+d,h), π
∗)
∣∣∣C]

(Bounding probabilities by 1 and Lemma 5)
≤ EG [Pincorrect inferenceϵf | C]

≤ ϵf

Here, π∗
(c+d,h)

:= argminπ(c+d,h)
EG

[
L(π(c+d,h), π

∗)
∣∣∣C].

Definition (Forward and Backward Inference). For a fixed time step t and C (as in §3.1), consider
the time steps {t− h− d+ 1 : t− h}. Define

Pf (t
′) := P (St′ = gt′ |St′−1 = gt′−1, At′−1 = at′−1)

for all t′ ∈ [t − h − d + 1 : t − h] with gt′ , gt′−1, at′−1 being the ground truth states and action
in the deterministic environment. We assume that Pf (t

′) = 1 in a deterministic environment. In a
stochastic environment, Pf (t

′) < 1 for all t′ and as the stochasticity increases, these values decrease
and approach 0. Then, we define

Pf := sup{Pf (t
′)|t′ ∈ [t− h− d+ 1 : t− h]}.
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Now, consider the time steps {t− h− d− c : t− h− c− 1}. Define

Pb(t
′) := P (St′ = gt′ |St′+1 = gt′+1)

for all t′ ∈ [t−h−d−c : t−h−c−1]. Since this is not conditioned on any action and as conditioning
on at′ reduces entropy, we assume that Pb(t

′) < 1 for all t′ ∈ [t− h− d− c : t− h− c− 1] in all
environments. As stochasticity increases, Pb(t

′) decreases and approaches 0. Then, define

Pb := sup{Pb(t
′)|t′ ∈ [t− h− d− c : t− h− c− 1]}.

C.2 Discussion on Assumption 2

Before we prove the next result, we briefly discuss Assumption 2. Note that, using law of total
probability, we can already write:

π(c,h)(at|st−h−c:t−h, at−h:t−1)

=
∑

st−k:t−h−c−1,
st−h+1:t

P̂ (st−k:t−h−c−1, st−h+1:t|st−h−c:t−h, at−h:t−1)π(k,1)(at|st−k:t, at−h:t−1)

(Law of Total Probability)

= Est−k:t−h−c−1,st−h+1:t∼P̂

[
π(k,1)(at|st−k:t)|st−h−c:t−h, at−h:t−1

]
.

Here P̂ is the policy’s learned environment dynamics. Assumption 2 allows us to replace P̂ with
the true environment dynamics P . In other words, we assume that an optimal policy has already
learned these distributions as optimally as possible. Given we are talking about the optimal policy
trained with infinite data, this is a reasonable assumption. Note that this does not make inference
trivial - the policy learns the distribution but, given the distribution has non-zero entropy, the policy
can still infer the wrong state.
Thus, using assumption 2, we can write the optimal policy as

π(c,h) = Eŝt−k:t−h−c−1,ŝt−h+1:t∼P

[
π(k,1)|st−h−c:t−h, at−h:t−1

]
where P (St+1 = st+1|St = st, at) is the environment’s transition dynamics and π(k,1) is the
distribution of at under a (k, 1)-model.

C.3 Consistency-Reactivity Inequalities

Now we prove the Consistency-Reactivity Inequalities. We prove the upper and lower bound sepa-
rately:
Proposition 1 (Consistency-Reactivity Inequalities - Upper Bound). Let L be a non-linear, convex
loss function. Let S+ ⊂ {st−k:t} be the states both models observe and let S− := {st−k:t} \ S+.
Let C := {at−h−d:t−1} ∪ S+, G := {at, zt−k:t} ∪ S−. Then, we can bound the expected loss of
the (c, h+ d)-policy and the (c, h)-policy as:

min
πh+d

EG [L(πh+d, π
∗)|C] ≤ min

πh

EG [L(πh, π
∗)|C]− αb + ϵf (1− P 2d

f ).

Proof. For ease of notation, we will write xb
a: to mean xa:b. Additionally, for greater clarity, we will

explicitly include the context length of each model, so π(c,h) = πh and π(c,h+d) = πh+d. We start
by writing, using Assumption 1,

π(c,h+d)(at|st−h−d−c:t−h−d, at−h−d:t−1)

= π(c,h+d)(at|st−h−d
t−h−d−c:, a

t−1
t−h−d:)

= Eŝt−h−d+1:t−h

[
π(c+d,h)(at|st−h−d

t−h−d−c:, ŝ
t−h
t−h−d+1:, a

t−1
t−h−d:)

∣∣∣st−h−d
t−h−d−c:, a

t−1
t−h−d:

]
.
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Using this, we expand the left hand side of our inequality:

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]

= min
π(c+d,h)

EG

[
L(Eŝt−h−d+1:t−h

[
π(c+d,h)

∣∣∣C]
, π∗)|C

]
= min

π(c+d,h)

EG

[
L(P (ŝt−h

t−h−d+1:|s
t−h−d
t−h−d−c:, a

t−h−1
t−h−d:)π(c+d,h)(at| · · · , gt−h

t−h−d+1:)+∑
ŝt−h−d+1:t−h

not all gt′

P (ŝt−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗)|C

]

≤ min
π(c+d,h)

EG

[
L(P d

f π(c+d,h)(at| · · · , gt−h
t−h−d+1:)+∑

ŝt−h−d+1:t−h
not all gt′

P (ŝt−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗)|C

]

where we computed the expectation Eŝt−h−d+1:t−h

[
π(c+d,h)

∣∣∣C] by grouping into two terms : one
where every ŝt−h−d+1:t−h = gt−h−d+1:t−h and one where there is at least one term ŝi that is not
gi. This grouping was done using the definition of noise in our environment. We introduce the
following notation here

P̂ ̸=gt′ :=
∑

ŝt−h−d+1:t−h

not all gt′

P (ŝt−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:).

Similarly,
P ̸=gt′ :=

∑
st−h−d+1:t−h

not all gt′

P (st−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:).

With this notation, we continue our expansion:

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]

≤ min
π(c+d,h)

EG

[
L(P d

f π(c+d,h)(at| · · · , gt−h
t−h−d+1:)+∑

ŝt−h−d+1:t−h
not all gt′

P (ŝt−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗)|C

]

≤ min
π(c+d,h)

EG

[
L(P d

f π(c+d,h)(at| · · · , gt−h
t−h−d+1:) + P̂ ̸=gt′ π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗)|C

]
≤ min

π(c+d,h)

EG

[
P d
f L(π(c+d,h)(at| · · · , gt−h

t−h−d+1:), π
∗)|C

]
+ EG

[
P̂ ̸=gt′L(π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗)|C

]
where we got the inequality using the fact that L is a convex function and, thus, convex in each
argument. Next, we take the expectation over st−h−d+1:t−h by grouping the terms into two: one
where every st−h−d+1:t−h = gt−h−d+1:t−h and one where there is at least one term si ̸= gi. Then,
with some suppression of notation in the expression of π(c+d,h) and G′ := G \ {at, st−h−d+1:t−h}:

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]

≤ min
π(c+d,h)

Eat[
P d
f P d

f EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: = gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: = gt−h
t−h−d+1:

]
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+ P̸=gt′ P d
f EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: = gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: ̸= gt−h
t−h−d+1:

]
+ P d

f P̂ ̸=gt′EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: ̸= gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: = gt−h
t−h−d+1:

]
+ P ̸=gt′ P̂ ̸=gt′EG′

[
L(π(c+d,h)(..., ŝ

t−h
t−h−d+1: ̸= gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: ̸= gt−h
t−h−d+1:

]

Now, we group all the terms into two - one representing where the learner’s simulation matches
the reality and one where it does not. Continuing from where we left off, first, define P f

ŝ=s :=

P (st−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:)

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗
)|C

]
≤ min

π(c+d,h)

Eat[
P

d
f P

d
f E

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = g
t−h
t−h−d+1: = s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: = g
t−h
t−h−d+1:

]
+ P ̸=g

t′
P

f
ŝ=sE

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = s
t−h
t−h−d+1: ̸= g

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
+ P

d
f P̸̂=g

t′
E
[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: ̸= g
t−h
t−h−d+1: = s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: = g
t−h
t−h−d+1:

]
+ P ̸=g

t′
P

d
f E

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = g
t−h
t−h−d+1: ̸= s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
+ P̸=g

t′
P (ŝ

t−h
t−h−d+1: ̸= st′ |st−h−d, a

t−h−1
t−h−d:)

E
[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: ̸= s
t−h
t−h−d+1: ̸= g

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
|C, at ] | |C]

For the match terms, we use the fact that P d
f ≤ 1 and

P f
ŝ=s = P (ŝt−h

t−h−d+1: = st−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) ≤ 1. For the mismatch terms, we use the

definition of ϵf and Lemma 5. Then, we continue:

≤ min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

(Simulation matches reality)

+ P ̸=gt′

[
P d
f ϵf + P̂ ̸=gt′ ,st′ ϵf

]
+ P d

f

[
P̂ ̸=gt′ ϵf

]
. (Simulation does not match reality)

We simplify the mismatch terms further:

≤ P ̸=gt′

[
P d
f ϵf + (1− P d

f )ϵf
]
+ P d

f

[
P̂ ̸=gt′ ϵf

]
= P ̸=gt′ ϵf + P d

f P̂ ̸=gt′ ϵf

= P ̸=gt′ ϵf + P d
f

[
(1− P d

f )
]
ϵf

= (1− P d
f )ϵf + P d

f

[
(1− P d

f )
]
ϵf

= ϵf ·
[
1− P d

f + P d
f − P 2d

f

]
= ϵf ·

[
1− P 2d

f

]
.

Next, we simplify the match terms by using the definition of αb:

min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]
− αb.

Substituting these two terms back in, we conclude.

Now, we prove the lower bound:
Proposition 1 (Consistency-Reactivity Inequalities - Lower Bound). Let L be a non-linear, convex
loss function. Let S+ ⊂ {st−k:t} be the states both models observe and let S− := {st−k:t} \ S+.
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Let C := {at−h−d:t−1} ∪ S+, G := {at, zt−k:t} ∪ S−. Then, we can bound the expected loss of
the (c, h+ d)-policy and the (c, h)-policy as:

min
πh

EG [L(πh, π
∗)|C] ≤ min

πh+d

EG [L(πh+d, π
∗)|C]− αf + ϵb(1− P 2d

b ).

Proof. We proceed in a manner similar to the proof of the upper bound. For ease of notation, we
will write xb

a: to mean xa:b. Additionally, for greater clarity, we will explicitly include the context
length of each model, so π(c,h) = πh and π(c,h+d) = πh+d. We start by writing, using Assumption
1,

min
π(c,h)

EG

[
L(π(c,h), π

∗) | C
]

= min
π(c+d,h)

EG

L(P (gt−h−c−1
t−h−d−c:|st−h−c)π(c+d,h) +

∑
ŝt−h−c−1
t−h−d−c:

,

not all gt′

P (ŝt−h−c−1
t−h−d−c:|st−h−c)π

t
(c+d,h), π

∗)
∣∣∣C

 .

≤ min
π(c+d,h)

EG

L(P d
b π(c+d,h) +

∑
ŝt−h−c−1
t−h−d−c:

,

not all gt′

P (ŝt−h−c−1
t−h−d−c:|st−h−c)π

t
(c+d,h), π

∗)
∣∣∣C

 .

We introduce the following notation here

P̸̂=gt′ :=
∑

ŝt−h−d−c:t−h−c−1

not all gt′

P (ŝt−h−c−1
t−h−d−c:|st−h−c).

Similarly,

P̸=gt′ :=
∑

st−h−d−c:t−h−c−1

not all gt′

P (st−h−c−1
t−h−d−c:|st−h−c).

With this notation, we continue our expansion:

min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]

≤ min
π(c+d,h)

EG

[
L(P d

b π(c+d,h)(at|st−h
t−h−c:, g

t−h−c−1
t−h−d−c:, a

t−1
t−h:)+

P̂ ̸=gt′π(c+d,h)(at|st−h
t−h−c:, ŝ

t−h−c−1
t−h−d−c:, a

t−1
t−h:), π

∗) | C
]

≤ min
π(c+d,h)

EG

[
P d
b L(π(c+d,h)(at|..., gt−h−c−1

t−h−d−c:), π
∗) | C

]
+

EG

[
P̂ ̸=gt′L( π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c:), π

∗) | C
]

where we got the inequality using the fact that L is a convex function. Next, we take the expectation
over st−h−d−c:t−h−c−1 by grouping the terms into two: one where every st−h−d−c:t−h−c−1 =
gt−h−d−c:t−h−c−1 and one where there is at least one term si ̸= gi. Then, again suppressing some
terms inside the expression of π(c+d,h):
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min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]

≤ min
π(c+d,h)

Eat[
P d
b P d

b E
[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: = gt−h−c−1

t−h−d−c: = st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: = gt−h−c−1
t−h−d−c:

]
+ P ̸=gt′ P d

b E
[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: = gt−h−c−1

t−h−d−c: ̸= st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c:

]
+ P d

b P̸̂=gt′ E
[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: ̸= gt−h−c−1

t−h−d−c: = st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: = gt−h−c−1
t−h−d−c:

]
+ P ̸=gt′ P̂ ̸=gt′ E

[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: ̸= gt−h−c−1

t−h−d−c:), π
∗)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c: ] | C, at

]
| C

]

Now, we group all the terms into two - one representing where the learner’s simulation matches
the reality and one where it does not. Continuing from where we left off and defining P b

ŝ=s :=
P (ŝt−h−c−1

t−h−d−c: = st−h−c−1
t−h−d−c:|st−h−c):

min
π(c,h)

EG

[
L(π(c,h), π

∗
)|C

]
≤ min

π(c+d,h)

Eat[
P

d
b P

d
b E

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:

]
+ P̸=g

t′
P

b
ŝ=sE

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = s
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c:

]
+ P

d
b P̸̂=g

t′
E
[
L(π(c+d,h)(at|..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:

]
+ P ̸=g

t′
P

2d
b E

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c: ] | C, at

]
| C

]
+ P ̸=g

t′
P (ŝ

t−h−c−1
t−h−d−c: ̸= g

t−h−c−1
t−h−d−c:, s

t−h−c−1
t−h−d−c: | st−h−c)

E
[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: ̸= s
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c: ] | C, at

]
| C

]

For the match terms, we use the fact that P d
b ≤ 1 and

P (ŝt−h−c−1
t−h−d−c: = st−h−c−1

t−h−d−c:|s
t−h
t−h−c:) ≤ 1. For the mismatch terms, we use the definition of ϵb and

Lemma 5. Then, we continue:

≤ min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

(Simulation matches reality)

+ P̸=gt′

[
P d
b ϵb + P̂ ̸=gt′ ,st′ ϵb

]
+ P d

b

[
P̂ ̸=gt′ ϵb

]
. (Simulation does not match reality)

We simplify the mismatch terms further:

≤ P ̸=gt′

[
P d
b ϵb + (1− P d

b )ϵb
]
+ P d

b

[
P̂ ̸=gt′ ϵb

]
= P ̸=gt′ ϵb + P d

b P̂ ̸=gt′ ϵb

= P ̸=gt′ ϵb + P d
b

[
(1− P d

b )
]
ϵb

= (1− P d
b )ϵb + P d

b

[
(1− P d

b )
]
ϵb

= ϵb ·
[
1− P d

b + P d
b − P 2d

b

]
= ϵb ·

[
1− P 2d

b

]
.
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Next, we simplify the match terms by using the definition of αf which follows from Proposition 7
in a manner similar to the definition of αb:

min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]
− αf . (Proposition 7)

We substitute these terms back in to get the desired bound.

C.4 Discussion on Assumption 1

We assumed that c + h < k so that the larger action chunk model can condition on more states
from the distant past that are temporally correlated with at. In the case where c+ h ≥ k, the larger
action chunk model will not get any advantage (so, α = 0) and can only suffer from not having
observed the recent past states. However, this is a very unlikely scenario because we expect human
demonstrators to have a large memory horizon i.e.k is expected to be large.

C.5 Proof of Corollary 2 and Corollary 3

Now, we prove Corollary 2 as a direct consequence of the Consistency-Reactivity Inequalities. In a
near-deterministic environment, Pf is close to 1. This is because, conditioned on the state and action
at time t′ − 1, we can confidently infer the state visited at time t′ as the environment lacks noise.
Corollary 2 (Restated) In a near-deterministic environment, if at is temporally dependent on at
least one state in {st−h−c−d:t−h−c−1} and ϵf is finite,

min
πh+d

EG [L(πh+d, π
∗)|C] <min

πh

EG [L(πh, π
∗)|C]

Proof. This follows from Proposition 1 by taking Pf ≈ 1, ϵf not large and αb > 0 (since at is
temporally dependent on at least one state in {st−h−c−d:t−h−c−1} and the states in Tb cannot be
deterministically inferred from the context of πh).

Lastly, we prove Corollary 3. We assume that, in a highly stochastic environment, Pb is small. This
is because, for any time step t′, the agent could reach st′+1 from many different states at time t′ due
to the noise in the environment.
Corollary 3 (Restated) In a highly stochastic environment, if temporal dependency decreases over
the number of time steps i.e. αf > ϵb, then

min
πh+d

EG [L(πh+d, π
∗)|C] >min

πh

EG [L(πh, π
∗)|C]

Proof. Starting from Proposition 1, with Pb small (since the environment is highly stochastic), we
get

min
πt
(c,h)

EG

[
L(πt

(c,h) − πE)|C
]
≤ min

πt
(c,h+d)

EG

[
L(πt

(c,h+d) − πt
E)|C

]
− αf + ϵb.

Since temporal dependency reduces as number of steps grow, at is more temporally dependent on
the recent past states than on the distant past, so αf > ϵb. With this observation, we get:

min
πt
(c,h)

EG

[
L(πt

(c,h) − πE)|C
]
< min

πt
(c,h+d)

EG

[
L(πt

(c,h+d) − πt
E)|C

]
.

C.6 Closed-Loop versus Open-Loop in Highly Stochastic and Near-Deterministic
Environments

The Consistency-Reactivity Inequalities allow us to make an even stronger statement when we com-
pare strictly closed-loop policies with open-loop ones. Consider the same set-up as before with
h = 0. Thus, π(c,0) represents a closed-loop policy whereas π(c,d) represents an open-loop one. We
can compare these policies’ divergences with the expert across the entire trajectory in the limiting
cases of the environment stochasticity.
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Corollary 9. In a highly stochastic environment, if temporal dependency decreases such that αf >
ϵb at all time steps, then divergence between the closed-loop policy over the full trajectory is lower
than that between the open-loop policy and the expert. In a near deterministic environment, if there
is at least one time step t such that at depends on some state in st−d−c:t−c−1, then the divergence
between the closed-loop policy over the full trajectory is greater than that between the open-loop
policy and the expert.

Proof. At any arbitrary time step t, the chunks of the two policies may be aligned in one of two
ways:
Case 1: π(c,1) is executing at as the first action in its action chunk and π(c,1+d) is also executing at
as the first action in its action chunk.
Case 2: π(c,1) is executing at as the first action in its action chunk and π(c,1+d) is also executing at
as the k-th action, where k ∈ (1, 1 + d] in its action chunk.
Using the Consistency-Reactivity Inequalities, in Case 1, both policies have equal divergence.
However, in case 2, using Corollary 3, we know that the closed-loop policy will outperform the
open-loop one in the first setting of the statement and open-loop will outperform in the second.
From this, we can conclude the divergence across the full trajectory.
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